The Inactivation of a New Peptidoglycan Hydrolase Pmp23 Leads to Abnormal Septum Formation in Streptococcus pneumoniae

نویسندگان

  • Pagliero E
  • Dublet B
  • Frehel C
  • Dideberg O
  • Vernet T
  • Di Guilmi AM
چکیده

The bacterial peptidoglycan is the major component of the cell wall which integrity is essential to cell survival. In a previous work, we identified, in the positive-Gram pathogen Streptococcus pneumoniae , a unique protein containing a new putative peptidoglycan hydrolytic domain named PECACE (PEptidoglycan CArbohydrate Cleavage Enzyme). In this study, we characterise the physiological function of this protein called Pmp23 (Pneumococcal Membrane Protein of 23 kDa). A cell wall hydrolytic activity is observed with the recombinant protein. Inactivation of the pmp23 gene in the pneumococcus led to a decreased flocculation, an increased sensitivity to beta-lactam antibiotics and morphological alterations affecting the formation and localisation of the division septa. Taken together these observations indicate that Pmp23 is a hydrolase whose function is linked to peptidoglycan metabolism at the septum site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6.

Streptococcus pneumoniae produces two class B penicillin-binding proteins, PBP2x and PBP2b, both of which are essential. It is generally assumed that PBP2x is specifically involved in septum formation, while PBP2b is dedicated to peripheral cell wall synthesis. However, little experimental evidence exists to substantiate this belief. In the present study, we obtained evidence that strongly supp...

متن کامل

Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence

Streptococcus pneumoniae is a major cause of life-threatening diseases worldwide. Here we provide an in-depth functional characterization of LytB, the peptidoglycan hydrolase responsible for physical separation of daughter cells. Identified herein as an N-acetylglucosaminidase, LytB is involved also in colonization and invasion of the nasopharynx, biofilm formation and evasion of host immunity ...

متن کامل

Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae.

Separation of daughter cells during bacterial cell division requires splitting of the septal cross wall by peptidoglycan hydrolases. In Streptococcus pneumoniae, PcsB is predicted to perform this operation. Recent evidence shows that PcsB is recruited to the septum by the transmembrane FtsEX complex, and that this complex is required for cell division. However, PcsB lacks detectable catalytic a...

متن کامل

Structural Basis of the Novel S. pneumoniae Virulence Factor, GHIP, a Glycosyl Hydrolase 25 Participating in Host-Cell Invasion

Pathogenic bacteria produce a wide variety of virulence factors that are considered to be potential antibiotic targets. In this study, we report the crystal structure of a novel S. pneumoniae virulence factor, GHIP, which is a streptococcus-specific glycosyl hydrolase. This novel structure exhibits an α/β-barrel fold that slightly differs from other characterized hydrolases. The GHIP active sit...

متن کامل

DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum.

The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVA(Cg)) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Open Microbiology Journal

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2008